

Welcome to dask-ndmorph’s documentation!

Contents:

	Readme

	Installation

	Usage

	API

	Contributing

	Credits

Indices and tables

	Index

	Module Index

	Search Page

dask-ndmorph

[image: PyPI]
 [https://pypi.python.org/pypi/dask-ndmorph][image: conda-forge]
 [https://anaconda.org/conda-forge/dask-ndmorph][image: Travis CI]
 [https://travis-ci.org/dask-image/dask-ndmorph][image: Read the Docs]
 [https://dask-ndmorph.readthedocs.io/en/latest/?badge=latest][image: Coveralls]
 [https://coveralls.io/github/dask-image/dask-ndmorph][image: License]
A library for using N-D filters with Dask Arrays

	Free software: BSD 3-Clause

	Documentation: https://dask-ndmorph.readthedocs.io.

Features

	TODO

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the dask-image/dask-image-cookiecutter [https://github.com/dask-image/dask-image-cookiecutter] project template.

Installation

Stable release

To install dask-ndmorph, run this command in your terminal:

$ pip install dask-ndmorph

This is the preferred method to install dask-ndmorph, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for dask-ndmorph can be downloaded from the Github repo [https://github.com/dask-image/dask-ndmorph].

You can either clone the public repository:

$ git clone git://github.com/dask-image/dask-ndmorph

Or download the tarball [https://github.com/dask-image/dask-ndmorph/tarball/master]:

$ curl -OL https://github.com/dask-image/dask-ndmorph/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use dask-ndmorph in a project:

import dask_ndmorph

API

	dask_ndmorph package

dask_ndmorph package

	
dask_ndmorph.binary_closing(input, structure=None, iterations=1, origin=0)

	Wrapped copy of “scipy.ndimage.morphology.binary_closing”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multi-dimensional binary closing with the given structuring element.

The closing of an input image by a structuring element is the
erosion of the dilation of the image by the structuring element.

	Parameters:	
	input (array_like) – Binary array_like to be closed. Non-zero (True) elements form
the subset to be closed.

	structure (array_like, optional) – Structuring element used for the closing. Non-zero elements are
considered True. If no structuring element is provided an element
is generated with a square connectivity equal to one (i.e., only
nearest neighbors are connected to the center, diagonally-connected
elements are not considered neighbors).

	iterations ({int, float}, optional) – The dilation step of the closing, then the erosion step are each
repeated iterations times (one, by default). If iterations is
less than 1, each operations is repeated until the result does
not change anymore.

	origin (int or tuple of ints, optional) – Placement of the filter, by default 0.

	Returns:	binary_closing – Closing of the input by the structuring element.

	Return type:	ndarray of bools

See also

grey_closing(), binary_opening(), binary_dilation(), binary_erosion(), generate_binary_structure()

Notes

Closing [1]_ is a mathematical morphology operation [2]_ that
consists in the succession of a dilation and an erosion of the
input with the same structuring element. Closing therefore fills
holes smaller than the structuring element.

Together with opening (binary_opening), closing can be used for
noise removal.

References

	[1]	http://en.wikipedia.org/wiki/Closing_%28morphology%29

	[2]	http://en.wikipedia.org/wiki/Mathematical_morphology

Examples

>>> from scipy import ndimage
>>> a = np.zeros((5,5), dtype=int)
>>> a[1:-1, 1:-1] = 1; a[2,2] = 0
>>> a
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 0, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])
>>> # Closing removes small holes
>>> ndimage.binary_closing(a).astype(int)
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])
>>> # Closing is the erosion of the dilation of the input
>>> ndimage.binary_dilation(a).astype(int)
array([[0, 1, 1, 1, 0],
 [1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1],
 [0, 1, 1, 1, 0]])
>>> ndimage.binary_erosion(ndimage.binary_dilation(a)).astype(int)
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])

>>> a = np.zeros((7,7), dtype=int)
>>> a[1:6, 2:5] = 1; a[1:3,3] = 0
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 1, 0, 0],
 [0, 0, 1, 0, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> # In addition to removing holes, closing can also
>>> # coarsen boundaries with fine hollows.
>>> ndimage.binary_closing(a).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_closing(a, structure=np.ones((2,2))).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])

	
dask_ndmorph.binary_dilation(input, structure=None, iterations=1, mask=None, border_value=0, origin=0, brute_force=False)

	Wrapped copy of “scipy.ndimage.morphology.binary_dilation”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multi-dimensional binary dilation with the given structuring element.

	Parameters:	
	input (array_like) – Binary array_like to be dilated. Non-zero (True) elements form
the subset to be dilated.

	structure (array_like, optional) – Structuring element used for the dilation. Non-zero elements are
considered True. If no structuring element is provided an element
is generated with a square connectivity equal to one.

	iterations ({int, float}, optional) – The dilation is repeated iterations times (one, by default).
If iterations is less than 1, the dilation is repeated until the
result does not change anymore.

	mask (array_like, optional) – If a mask is given, only those elements with a True value at
the corresponding mask element are modified at each iteration.

	origin (int or tuple of ints, optional) – Placement of the filter, by default 0.

	border_value (int (cast to 0 or 1), optional) – Value at the border in the output array.

	Returns:	binary_dilation – Dilation of the input by the structuring element.

	Return type:	ndarray of bools

See also

grey_dilation(), binary_erosion(), binary_closing(), binary_opening(), generate_binary_structure()

Notes

Dilation [1]_ is a mathematical morphology operation [2]_ that uses a
structuring element for expanding the shapes in an image. The binary
dilation of an image by a structuring element is the locus of the points
covered by the structuring element, when its center lies within the
non-zero points of the image.

References

	[1]	http://en.wikipedia.org/wiki/Dilation_%28morphology%29

	[2]	http://en.wikipedia.org/wiki/Mathematical_morphology

Examples

>>> from scipy import ndimage
>>> a = np.zeros((5, 5))
>>> a[2, 2] = 1
>>> a
array([[0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.],
 [0., 0., 0., 0., 0.]])
>>> ndimage.binary_dilation(a)
array([[False, False, False, False, False],
 [False, False, True, False, False],
 [False, True, True, True, False],
 [False, False, True, False, False],
 [False, False, False, False, False]], dtype=bool)
>>> ndimage.binary_dilation(a).astype(a.dtype)
array([[0., 0., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 1., 1., 1., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.]])
>>> # 3x3 structuring element with connectivity 1, used by default
>>> struct1 = ndimage.generate_binary_structure(2, 1)
>>> struct1
array([[False, True, False],
 [True, True, True],
 [False, True, False]], dtype=bool)
>>> # 3x3 structuring element with connectivity 2
>>> struct2 = ndimage.generate_binary_structure(2, 2)
>>> struct2
array([[True, True, True],
 [True, True, True],
 [True, True, True]], dtype=bool)
>>> ndimage.binary_dilation(a, structure=struct1).astype(a.dtype)
array([[0., 0., 0., 0., 0.],
 [0., 0., 1., 0., 0.],
 [0., 1., 1., 1., 0.],
 [0., 0., 1., 0., 0.],
 [0., 0., 0., 0., 0.]])
>>> ndimage.binary_dilation(a, structure=struct2).astype(a.dtype)
array([[0., 0., 0., 0., 0.],
 [0., 1., 1., 1., 0.],
 [0., 1., 1., 1., 0.],
 [0., 1., 1., 1., 0.],
 [0., 0., 0., 0., 0.]])
>>> ndimage.binary_dilation(a, structure=struct1,\
... iterations=2).astype(a.dtype)
array([[0., 0., 1., 0., 0.],
 [0., 1., 1., 1., 0.],
 [1., 1., 1., 1., 1.],
 [0., 1., 1., 1., 0.],
 [0., 0., 1., 0., 0.]])

	
dask_ndmorph.binary_erosion(input, structure=None, iterations=1, mask=None, border_value=0, origin=0, brute_force=False)

	Wrapped copy of “scipy.ndimage.morphology.binary_erosion”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multi-dimensional binary erosion with a given structuring element.

Binary erosion is a mathematical morphology operation used for image
processing.

	Parameters:	
	input (array_like) – Binary image to be eroded. Non-zero (True) elements form
the subset to be eroded.

	structure (array_like, optional) – Structuring element used for the erosion. Non-zero elements are
considered True. If no structuring element is provided, an element
is generated with a square connectivity equal to one.

	iterations ({int, float}, optional) – The erosion is repeated iterations times (one, by default).
If iterations is less than 1, the erosion is repeated until the
result does not change anymore.

	mask (array_like, optional) – If a mask is given, only those elements with a True value at
the corresponding mask element are modified at each iteration.

	origin (int or tuple of ints, optional) – Placement of the filter, by default 0.

	border_value (int (cast to 0 or 1), optional) – Value at the border in the output array.

	Returns:	binary_erosion – Erosion of the input by the structuring element.

	Return type:	ndarray of bools

See also

grey_erosion(), binary_dilation(), binary_closing(), binary_opening(), generate_binary_structure()

Notes

Erosion [1]_ is a mathematical morphology operation [2]_ that uses a
structuring element for shrinking the shapes in an image. The binary
erosion of an image by a structuring element is the locus of the points
where a superimposition of the structuring element centered on the point
is entirely contained in the set of non-zero elements of the image.

References

	[1]	http://en.wikipedia.org/wiki/Erosion_%28morphology%29

	[2]	http://en.wikipedia.org/wiki/Mathematical_morphology

Examples

>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[1:6, 2:5] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_erosion(a).astype(a.dtype)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])
>>> #Erosion removes objects smaller than the structure
>>> ndimage.binary_erosion(a, structure=np.ones((5,5))).astype(a.dtype)
array([[0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 0]])

	
dask_ndmorph.binary_opening(input, structure=None, iterations=1, origin=0)

	Wrapped copy of “scipy.ndimage.morphology.binary_opening”

Excludes the output parameter as it would not work with Dask arrays.

Original docstring:

Multi-dimensional binary opening with the given structuring element.

The opening of an input image by a structuring element is the
dilation of the erosion of the image by the structuring element.

	Parameters:	
	input (array_like) – Binary array_like to be opened. Non-zero (True) elements form
the subset to be opened.

	structure (array_like, optional) – Structuring element used for the opening. Non-zero elements are
considered True. If no structuring element is provided an element
is generated with a square connectivity equal to one (i.e., only
nearest neighbors are connected to the center, diagonally-connected
elements are not considered neighbors).

	iterations ({int, float}, optional) – The erosion step of the opening, then the dilation step are each
repeated iterations times (one, by default). If iterations is
less than 1, each operation is repeated until the result does
not change anymore.

	origin (int or tuple of ints, optional) – Placement of the filter, by default 0.

	Returns:	binary_opening – Opening of the input by the structuring element.

	Return type:	ndarray of bools

See also

grey_opening(), binary_closing(), binary_erosion(), binary_dilation(), generate_binary_structure()

Notes

Opening [1]_ is a mathematical morphology operation [2]_ that
consists in the succession of an erosion and a dilation of the
input with the same structuring element. Opening therefore removes
objects smaller than the structuring element.

Together with closing (binary_closing), opening can be used for
noise removal.

References

	[1]	http://en.wikipedia.org/wiki/Opening_%28morphology%29

	[2]	http://en.wikipedia.org/wiki/Mathematical_morphology

Examples

>>> from scipy import ndimage
>>> a = np.zeros((5,5), dtype=int)
>>> a[1:4, 1:4] = 1; a[4, 4] = 1
>>> a
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 1]])
>>> # Opening removes small objects
>>> ndimage.binary_opening(a, structure=np.ones((3,3))).astype(int)
array([[0, 0, 0, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 0, 0, 0]])
>>> # Opening can also smooth corners
>>> ndimage.binary_opening(a).astype(int)
array([[0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0]])
>>> # Opening is the dilation of the erosion of the input
>>> ndimage.binary_erosion(a).astype(int)
array([[0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0]])
>>> ndimage.binary_dilation(ndimage.binary_erosion(a)).astype(int)
array([[0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0],
 [0, 1, 1, 1, 0],
 [0, 0, 1, 0, 0],
 [0, 0, 0, 0, 0]])

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/dask-image/dask-ndmorph/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

dask-ndmorph could always use more documentation, whether as part of the
official dask-ndmorph docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/dask-image/dask-ndmorph/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up dask-ndmorph for local development.

	Fork the dask-ndmorph repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/dask-ndmorph.git

	Install your local copy into an environment. Assuming you have conda installed, this is how you set up your fork for local development (on Windows drop source). Replace “<some version>” with the Python version used for testing.:

$ conda create -n dask-ndmorphenv python="<some version>"
$ source activate dask-ndmorphenv
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions:

$ flake8 dask_ndmorph tests
$ python setup.py test or py.test

To get flake8, just conda install it into your environment.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5, and 3.6. Check
https://travis-ci.org/dask-image/dask-ndmorph/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests/test_dask_ndmorph.py

Credits

Development Lead

	John Kirkham, Howard Hughes Medical Institute <kirkhamj@janelia.hhmi.org>

Contributors

None yet. Why not be the first?

 Python Module Index

 d

 		 	

 		
 d	

 	
 	
 dask_ndmorph	

Index

 B
 | D

B

 	
 	binary_closing() (in module dask_ndmorph)

 	binary_dilation() (in module dask_ndmorph)

 	
 	binary_erosion() (in module dask_ndmorph)

 	binary_opening() (in module dask_ndmorph)

D

 	
 	dask_ndmorph (module)

 _static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		Welcome to dask-ndmorph's documentation!

 		Readme

 		Features

 		Credits

 		Installation

 		Stable release

 		From sources

 		Usage

 		API

 		dask_ndmorph package

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

 		Credits

 		Development Lead

 		Contributors

_static/up-pressed.png

_static/comment-bright.png

